Scientific Photography

by Jackson Chu

We all have indispensible tools we use in science. A sturdy bucket for sampling intertidal critters and seaweeds. Our trusty calipers for measuring morphometrics. Our favorite R-package for numerical ecology. All these are important for doing science. My favorite tool for scientific communication and outreach are pretty photos! A good photo can captivate and create interest in your work and, more importantly, let you communicate science to a much greater audience.

3 sponge classes

Three classes of sponges. Left: a calcareous sponge (Sycon sp.). Middle: a carnivorous demosponge (Asbestopluma occidentalis). Right: a juvenile hexactinellid (glass) sponge (Aphrocallistes vastus). All scale bars  = 1 cm.  © Jackson Chu. All rights reserved.

How did I take those photos?

There are a few key ingredients: (1) a digital slr, (2) a  50mm lens or 28mm lens, (3) a reversing ring, and (4) a flash that can be used off camera. (e.g. with an off-camera sync cord)

My science photography kit.

My science photography kit.

My science photography kit.

As a graduate student living on mac and cheese, I cobbled together my used camera equipment from various online sources (e.g. eBay). The camera brand really makes no difference. I would estimate I spent ~$300 for everything:  $200 for the camera, $50 for the lens, $2 for the reversing ring, and $50 for the flash. Because I am always working with small (but not microscopic) invertebrates, one trick to close-up (macro) photography is to mount the lens backwards onto the camera using the reversing ring.  A 50mm lens mounted backwards onto a camera will give you a 1:1 magnification ratio (1 cm object will be 1 cm on the camera sensor).  A backwards mounted 28 mm lens will give you a higher magnification ratio of 3:1. There are also other alternatives that yield similar results: macro-focusing teleconverters, extension tubes, or dedicated macro lenses.  In order to get proper lighting, a flash will have to be oriented close to the object. You can do this in one of two ways. Modern day flashes can be wirelessly triggered from the camera. Otherwise, an off-camera flash cord can be used.

Most of the time I’m trying to take photos of my live study organisms.  What’s worked for me is to use a shallow, flat-bottomed glass tray filled with filtered seawater. Petri dishes work great for tiny 1-cm critters like carnivorous sponges. Glass baking dishes are great for >5 cm sized critters like nudibranchs and seapigs. I usually slip my neoprene laptop sleeve underneath the tray of seawater to create a black background in my photos.

Here are some examples!

Nudibranchs from Scott's Bay

Some nudibranchs from Scott’s Bay, Bamfield. Left to right: orange peel nudibranch (Tochuina tetraquetra), white lined dirona (Dirona albolineata), opalescent nudibranch (Hermissenda crassicornis), and clown nudibranch (Triopha catalinae). © Jackson Chu. All rights reserved.

Scotoplanes globosa

Sea piglets. Juvenile sea pigs (Scotoplanes globosa) sampled from 1500 m in the northeast Pacific Ocean. Each sea pig was ~5 cm in length. © Jackson Chu. All rights reserved.

Bamfield featured tonight on CBC’s Still Standing

by Amanda Kahn

Jeff Harris in Bamfield

Jonny Harris showcased Bamfield, B.C. in an episode of Still Standing, airing tonight at 9:30 PM PST. Image linked from the website of Still Standing.

In 30 minutes, the town of Bamfield will be featured on CBC’s comedy show Still Standing.  Jonny Harris visited Bamfield and met its wonderful residents, plus got a tour of the marine station.  You can watch the show online here.

Still Standing

Dr. Louis Druehl is one of many Bamfielders featured in Still Standing. Image from the Still Standing Facebook page.

Long carapace spines help larval crabs swim

by Anna Smith and Amanda Kahn

We are used to seeing crabs scuttling across the seafloor or scrambling under rocks in the intertidal zone, but before they settle on the seabed they have larval stages that live in the water column as plankton.  Zoeae (pronounced zoe-EE-uh) and megalopae (MEG-uh-lope-ee) drift through the water, eating food and eventually metamorphosing into bottom-dwelling crabs.

Crab life cycle stages

Life cycle stages of a crab: an egg hatches into swimming zoea stages, then to a megalopa, then metamorphoses into a benthic juvenile and adult crab. Image credit: A Snail’s Odyssey

For her class project in Crustacean Biology (a summer course taught in 2012), Anna Smith worked with instructor Greg Jensen to study how swimming is accomplished by the zoeae of a porcelain crab, Petrolisthes cinctipes. Most crab larvae swim vertically in the water column and are fairly poor swimmers. These zoeae are swept along with the currents and are often taken out to sea with no hope of returning to the shore to settle. Check out the video below to see how zoeae of most crab species move in the water.

Most crab zoeae have sharply pointed spines projecting from their carapace, as pictured below. Previous studies have found these spines to be connected with predator avoidance by making the larvae harder to swallow. The zoeae of porcelain crabs, however, have unusually long spines sticking out the front and back of the carapace. They are also much stronger swimmers than zoeae of many crab species, enabling them to stay close to shore and avoid being swept away from settling grounds. These zoeae swim horizontally through the water column and exhibit much more directional control than most crab zoeae. Anna studied whether the elongated spines of porcelain crabs were connected to their unique swimming by studying their swimming ability with both spines intact, then removed the front, back, or all spines to see how their swimming changed.

Zoea of a porcelain crab

Zoea of a porcelain crab. Image credit: Greg Jensen 2015. This image is from his new book, Crabs and Shrimps of the Pacific Northwest.

The spines were in fact very important to the swimming ability of the zoeae.  Zoeae who had their front (anterior) spine removed could not maintain constant depth in the water.  Zoeae who had their posterior spines removed could not swim backwards or change directions easily and with both front and back spines removed the zoeae could not swim at all. This led Anna and Greg to conclude that the spines contribute to the superior swimming ability of porcelain crab zoeae.

Why is this important? This suggests that the carapace spines are not only used as physical protection from predators, as previously suggested, but also contribute to their survival in other ways. Anna and Greg also hypothesize that the ability to better control direction and water column depth helps the zoeae navigate currents and stay close to shore and may explain their limited dispersal offshore.

Citation:

Smith, AE, and GC Jensen (2015). The role of carapace spines in the swimming behavior of porcelain crab zoeae (Crustacea: Decapoda: Porcellanidae).  Journal of Experimental Marine Biology and Ecology, 471:175-179.

If you want to learn more about the crabs and shrimps along our coast, check out Greg Jensen’s new crustacean guide Crabs and Shrimps of the Pacific Northwest.

To learn more about this course and others offered at BMSC, check out the University Programs website.

Climate change and the 5 stages of grief

by Amanda Kahn

In 1969, Dr. Elizabeth Kübler-Ross outlined 5 stages of grief in her book On Death and Dying to help people cope with grief from the loss of a loved one or news of their own terminal illness.  Psychologists later noted “that this emotional cycle was not exclusive just to the terminally ill, but also other people who were affected by bad news, such as losing their jobs or otherwise being negatively affected by change” (changingminds.org).

So how does this tie in to climate change or other new, major ideas and why might it be helpful to keep these 5 stages in mind?  Well, when I thought about my own thought progression, the changing perspectives of the scientific community at the Currents Symposium, and then how the media and public see climate change, I realized that we’ve been walking through the 5 stages of grief, also called the Kübler-Ross Grief cycle.  Quotations below all come from a great summary of the Kübler-Ross Grief Cycle from changingminds.org.

There are 5 major stages that vary between being active or passive (with a few extras sometimes thrown in, as seen in the diagram below).  During active stages, a person is likely to do something/be pushed into action (whether correct or misdirected).  During passive stages, a person usually is stuck/unable to act as needed.  The five stages are: denial, anger, bargaining, depression, and acceptance.

Kubler-Ross grief cycle

The Kubler-Ross extended grief cycle. Credit: ChangingMinds.org

Denial

Consensus about climate change

Public perception versus actual consensus in the scientific community regarding climate change. Credit: SkepticalScience.com

The first stage is a transitional stage of shock followed quickly by denial, where people pretend that no news has been given.  “They effectively close their eyes to any evidence and pretend that nothing has happened.”  When I first read about climate change, I thought the projections must be overestimates, and that we wouldn’t allow ourselves to stay on a dangerous trajectory.  Some of the general public and news media seem stuck in this denial phase, preferring to stir up controversy or conflict where there is none in the scientific community.  Take note: this is a brilliant strategy since denial is one of the passive phases–no one acts if they can find a nugget of doubt that says that they do not have to.

Contributions to climate change

Bar graph showing % contribution of humans versus natural sources to climate change over the past 50-65 years. Different colors of bars indicate different climate models run. Credit: SkepticalScience.com

Anger

Denial eventually transitions to anger and frustration.  A person might try to blame anyone or anything for the change, except for him/herself.  I was frustrated and blamed everything that emitted greenhouse gases–industries, cows, cars, volcanoes–but couldn’t think clearly about how I fit into things.  Interestingly, the anger and denial stages can cycle back and forth, getting stuck in a loop.

Human contributions to climate change

Predicted human contributions to climate change in 2020 and 2100. Credit: NASA/GISS

Bargaining

After getting over anger, a person begins to realize that the inevitable is happening.  They begin “seeking ways to avoid having the bad thing happen. Bargaining is thus a vain expression of hope that the bad news is reversible.”

Depression

This phase is easy to get stuck into.  “The inevitability of the news eventually…sinks in and the person reluctantly accepts that it is going to happen…In this deep depression, they see only a horrible end with nothing beyond it. In turning in towards themselves, they turn away from any solution and any help that others can give them.”  “In this phase, the person may now be blaming themselves as they take responsibility for their action where something has gone wrong.”  In 2008, I attended the Monterey Bay National Marine Sanctuary Currents Symposium.  At that time, climate change was just coalescing into a well accepted theory in the scientific community, and the conference was filled with depressing reports and projections of what was to come.  Looking back, I felt that the scientific community was in that state of depression.

Acceptance

“Acceptance is typically visible by people taking ownership both for themselves and their actions. They start to do things and take note of the results, and then changing their actions in response. They will appear increasingly happier and more content as they find their way forward.”  By 2010, the research presented at the same symposium was different.  The focus of the research changed, even though the projections and ideas about climate change had not. Instead of doom-and-gloom predictions, there were people presenting research on carbon-neutral energy, technology to sequester carbon into building materials, and adaptive ways to lessen our contributions to, and the impacts of, climate change.  It was a call to action–research was being done to figure out how to live on our changing planet and to temper human impacts.  This is the most effective, active phase of the grief cycle and is where everyone needs to be: willing to change, find creative ways to lessen our impact, and accept responsibility in a human role in the situation.

My acceptance phase was similar to the views at the symposium.  I was depressed about it until I accepted that it’s inevitable given what we’ve already emitted, but it doesn’t have to be something I can do nothing about.  The climate is changing and carbon emissions from humans are responsible, but it’s possible to change what emissions are being put out. the way we emit, and the research and technological energy we put into dealing with it.  When media and the general public move from the passive phases of denial and depression into the active phase of acceptance, we’ll become the responsive, adaptable, innovative problem-solvers we need to be to live in a changing world.

Where do you fall in this cycle?  Have you experienced this same progression of thoughts, either relating to climate change or some other concept or idea?  Write them in the comments below.

Please remember that this was a thought exercise based on my personal observations and experiences.  As stated at the beginning of the post, this isn’t the post or the place to argue the validity of climate science–it is about the thought progression of people accepting a new idea that was at one time controversial.

Ucluelet Aquarium grand re-opening March 15

by Amanda Kahn

The Ucluelet Aquarium, across Barkley Sound from Bamfield, is re-opening its doors for another summer season on Saturday, March 15 at 12 noon.  The aquarium displays local marine life of the Pacific Northwest with the distinction of being one of the few “catch-and-release” aquaria in the world.  Admission on opening day is by donation.

The aquarium will be open on Saturday from 12 PM until 5 PM, then will begin regular hours of 10 AM to 5 PM until the summer (when they will stay open until 6 PM).  Check their website for current hours and rates.

Touch tanks at the Ucluelet Aquarium

Touch tanks at the Ucluelet Aquarium. Credit: Ucluelet Aquarium Society.

Sensory organ discovered in sponges helps them respond to their environment despite having no nervous system

by Amanda Kahn

Sponges are animals, but they do not have the features we’re used to seeing when we think of animals: no gut, no head or tail, no nerves, and no stomachs or other organs.  And yet despite not having a nervous system, sponges are able to respond to their environment by changing the canal sizes in their filter-feeding system, in an action called the “inflation-contraction response.”  It’s basically akin to what we do when we sneeze.  This was observed in the mid-1900’s, but scientists have only been able to speculate what could be helping the sponges sense and coordinate various cells in their body when there are no nerves or sensory organs observed.  Danielle Ludeman, one of the authors here at the Madreporite, has just published an article describing the sensory organ that she and her coauthors, Nathan Farrar, Ana Riesgo, Jordi Paps, and Sally Leys, discovered in many different species of sponges: primary cilia used to detect changes in water flow.  Check out the time-lapse video below to see how responsive sponges are to irritants (in this case sediments) in the water.

Danielle tested if those cilia are used to detect changes in water flow by using drugs that target and knock out the cilia.  When the cilia were knocked out or knocked down, the “sneeze” response couldn’t be initiated.  If cilia were permitted to grow back following treatment, the “sneeze” response could be initiated.  In our kidneys, primary cilia are used to detect water flow.  The structure of the paired cilia Danielle found aligns well with those of primary cilia in other animals, further supporting that these are sensory cilia that allow the sponges to detect their environment.

The cilia line the osculum, the chimney-like opening of the sponge.  If that osculum is removed, the sponge also is not able to initiate a sneeze response.  This led Danielle and co-authors to determine that the osculum can be thought of as a sensory organ, and not just a giant chimney.

Figure 4 from Ludeman et al. 2014

The “sneeze” response is shown by an increase in canal diameter followed by a rapid decrease (the black lines in the graphs). Various drugs that affect the cilia also affected that inflation/contraction. Source: Ludeman et al. (2014).

Why does this matter to us, and how does it apply to evolutionary theory?  Sponges are one of the earliest branches off of the animal tree of life (the Metazoa).  While they are animals, their distant relation to us and to all other animals (collectively called the Eumetazoa) means they diverged from whatever last common ancestor the Metazoa shared and evolved into something quite different and independent of what other animals have evolved into.  This isn’t unique–every animal phylum is very different from every other.  What is unique is their placement at the base of our collective “family tree.”  If a sponge shares a feature that we also have, it’s likely that the proto-animal–the last common ancestor that all animals shared–had that feature as well.  It brings us a little bit closer toward understanding how we evolved from single-celled organisms to the multicellular, fantastically complex and coordinated animals we are today.

Still think sponges are boring?
(Hint: they are, but only in one way that word is defined!).

Citation:

Ludeman, D.A., N. Farrar, A. Riesgo, J. Paps, and S.P. Leys (2014).  Evolutionary origins of sensation in metazoans: evidence for a new sensory organ in sponges.  BMC Evolutionary Biology, 14(3).  doi:10.1186/1471-2148-14-3.

To learn more about sponges and research on the origin of animal body plans, check out the Leys lab website.